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INTRODUCTION

Stochastic gradient descent (SGD) is widely used in training of mod-
ern machine learning models such as deep neural networks, and the
implicit bias of SGD underlies the generalization ability of the trained
models. While it still remains unclear how to mathematically character-
ize such bias.

Formulation of SGD: Given training loss L : RD → R,

xη(k + 1) = xη(k)− η(∇L(xη(k)) +
√

Ξσξk(xη(k))) (1)

• η is the learning rate (LR)

• σ(x) = [σ1(x), σ2(x), . . . , σΞ(x)] ∈ RD×Ξ is the noise function

• ξk is sampled uniformly from {1, 2, . . . ,Ξ} and Eξk [σξk(x)] = 0

Main Contributions of This Work:

#1. A mathematical framework to study implicit bias of SGD with
small LR

#2. Provable generalization benefit of stochasticity: Minimax opti-
mal rate for learning sparse quadratically overparametrized lin-
ear models.

PROBLEM SETTING

Manifold of Local Minimizers: Γ is a (D −M)-dimensional subman-
ifold of RD such that for all x ∈ Γ, x is a local minimizer of L and
rank(∇2L(x)) = M .

When Does Such A Manifold Exist? Overparametrization!

Canonical SDE Approximation of SGD:

dX̃η(t) = −η∇L(X̃η(t))dt+ η · σ(X̃η(t))dW (t) (2)

where {W (t)}t≥0 is a Ξ-dimensional Wiener Process and Σ(x) =
σ(x)σ(x)> is the covariance matrix of gradient noise.

INTUITIVE EXPLANATION OF THE IMPLICIT BIAS

Blanc et. al, (2020) showed that around some manifold of local mini-
mizers SGD decreases tr[∇2L] if gradient covariance is equal to trace of
hessian, Σ ≡ ∇2L, on the manifold. (e.g., SGD with label noise)

Taylor Expansion Around A Local Minimizer: Let ∆(t) = X̃η(t)−X∗,

d∆(t) ≈ −η∇2L(X∗)∆(t)dt+ ησ(X∗)dW (t)

which behaves like an Ornstein-Uhlenbeck process in the normal space

The fast dynamics in the normal space activates the second order
Taylor expansion in the tangent space, creating a Θ(η2) velocity, which
is slow but deterministic and acumulates over time.

Issue: The above local analysis only holds for O(η−1.6) time. How to
do global analysis?

OUR APPROACH: SEPARATING SLOW FROM FAST

Time Rescaling for SDE: Let Xη(t) = X̃η(t/η2), then

dXη(t) = −η−1∇L(Xη(t))dt︸ ︷︷ ︸
Fast

+σ(Xη(t))dW (t)︸ ︷︷ ︸
Slow

As η → 0, the Fast part rapidly drivesXη(t) towards Γ via the projection
induced by the gradient flow, denoted by Φ(Xη(t)).

Lemma 1. ∂Φ(x)∇L(x) ≡ 0.

Applying Lemma 1 and Ito’s lemma, we get

dΦ(Xη(t)) = ∂Φ(Xη)σ(Xη)dW (t) +
1

2
∂2Φ(Xη)[σ(Xη)σ(Xη)>]dt.

Since Φ(Xη(t)) ≈ Xη(t) near Γ, the Slow part survives:

dXη(t) ≈ ∂Φ(Xη)σ(Xη)dW (t)︸ ︷︷ ︸
Tangent noise

+
1

2
∂2Φ(Xη)[σ(Xη)σ(Xη)>]dt.︸ ︷︷ ︸

Compensation and regularization

The above analysis can be made rigorous and extended to SGD by
viewing SGD as an asymptotically continuous stochastic process and
further applying the classic results by Katzenberger (1991).

MAIN RESULTS

Lemma 2. ∂Φ(x) is the projection matrix of the tangent space of Γ at x.

Notation: . Define Σ‖(x) = ∂Φ(x)Σ(x)Φ(x) (noise covariance in the tan-
gent space), Σ⊥(x) = (I − ∂Φ(x))Σ(x)(I − ∂Φ(x)) (noise covariance in
the normal space), and Σ‖,⊥ = Σ>⊥,‖ = ∂Φ(x)Σ(x)(I − ∂Φ(x)) (covari-
ance across the tangent and normal space).

Lyapunov Operator: For a symmetric matrix H , define WH = {Σ | Σ =
Σ>, HH†Σ = Σ = ΣHH†}. The Lyapunov operator LH : WH → WH is
defined as LH(Σ) = HΣ + ΣH .

Main Theorem. For SGD (1) and any T > 0, xη(bT/η2c) converges
in distribution to Y (T ) as η → 0, where Y (T ) is the solution to the
following SDE at time T when the global solution exists:

dY (t) = Σ
1/2
‖ (Y )dW (t)︸ ︷︷ ︸
Tangent noise

− 1

2
∇2L(Y )†∂2(∇L)(Y )[Σ‖(Y )]dt︸ ︷︷ ︸

Tangent noise compensation

− 1

2
∂Φ(Y )∂2(∇L)(Y )[∇2L(Y )†Σ⊥,‖(Y )]dt︸ ︷︷ ︸

Mixed regularization

− 1

2
∂Φ(Y )∂2(∇L)(Y )[L−1

∇2L(Σ⊥(Y ))]dt︸ ︷︷ ︸
Normal regularization

.

PROVABLE GENERALIZATION BENEFIT OF STOCHASTICITY

Setting: Data {(zi, yi)}ni=1 where z1, . . . , zn
i.i.d∼ Unif({±1}d) orN (0, Id)

and each yi = 〈zi, w∗〉 for some unknown κ-sparse w∗ ∈ Rd. Denote
x =

(
u
v

)
∈ RD = R2d. For each i ∈ [n], define fi(x) = 〈zi, u�2 − v�2〉.

Consider the `2 loss L(x) = 1
n

∑n
i=1(fi(x)− yi)2.

Label Noise SGD: At iteration k, replace the true label yik by a per-
turbed label yik + δk where δk ∼ Unif({±1}) and run SGD on the per-
turbed label.

Regularizer: R(x) = tr[∇2L(x)] = 4
n

∑D
j=1

(∑n
i=1 z

2
i,j

)
(u2
j + v2

j ).

Limiting Dynamics = Riemannian gradient flow of R on Γ:

dx(t) = −∂Φ(x(t))∇R(x(t))dt.

Optimal Sparse Recovery ⇐= Constrained minimization of R on Γ.

Theorem. Under the above setting with n ≥ Ω(κ ln d) data, for any
generic initialization x0 and any ε > 0, there exist η0, T > 0 such that
for any η < η0, label noise SGD with LR η returns an ε-optimal solution
in bT/η2c steps with high probability.


