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Background: Implicit Bias

• Implicit bias: special properties of the solution found by the optimization algorithm
• Not implied by the value of the loss function
• Arise from the trajectory taken in parameter space by the optimization

• E.g., find sparse solutions without explicit  or  regularization

• Implicit bias is closely related to and can explain the generalization performance of algorithms
• There are different sources of implicit bias: parametrization, step size, noise, etc.

ℓ0 ℓ1
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• In this work, we study the following question:
• How do different parametrizations change the implicit bias of (continuous) gradient descent?



Problem Setting: Reparametrized Gradient Flow

• Consider a model with loss  and parameter 

•  for a parametrization  with   ( )

• E.g.,  where 

• , where  is given by the gradient flow on :
                                         

• Understand the implicit bias via the lens of (continuous) mirror descent

L : ℝd → ℝ w ∈ ℝd

w = G(x) G : ℝD → ℝd x ∈ ℝD D ≥ d

w = G(x) = u⊙2 − v⊙2 x = (u
v) ∈ ℝ2d

w(t) = G(x(t)) x(t) L ∘ G
dx(t) = − ∇(L ∘ G)(x(t))dt
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Hadamard product



Understand Implicit Bias via Mirror Descent
• Gradient flow: 

•  admits the following dynamics:

dx(t) = − ∇(L ∘ G)(x(t))dt = − ∂G(x(t))⊤ ∇L(G(x(t))dt

w(t) = G(x(t))
dw(t) = ∂G(x(t))dx(t) = −∂G(x(t))∂G(x(t))⊤ ∇L(w(t))dt
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• Suppose there is some strictly convex function  such thatR : ℝd → ℝ
∇2R(w(t))−1 = ∂G(x(t))∂G(x(t))⊤

• Then the dynamics of  satisfiesw(t)
dw(t) = − ∇2R(w(t))−1 ∇L(w(t))dt (Riemannian gradient flow)

⟺ d∇R(w(t)) = − ∇L(w(t))dt (Mirror flow)



Understand Implicit Bias via Mirror Descent (cont.)

dx(t) = − ∇(L ∘ G)(x(t))dt (GF) ⟺ d∇R(w(t)) = − ∇L(w(t))dt (MF)
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• Previous works presented several settings where the implicit bias of gradient flow 
    can be described by the mirror flow
       Gunasekar et al. (2018); Vaskevicius et al. (2019); Woodworth et al. (2020); Amid & Warmuth (2020); Azulay et al. (2021); Yun et al. (2021) ……

• Result (linear model): If as ,  converges to some optimal solution , 
then  minimizes a convex regularizer among all optimal solutions:

t → ∞ w(t) w∞
w∞

w∞ = arg min
w:optimal

DR(w, w(0))

• Question: When does  hold?

• Our answer: When  is a ‘commuting parametrization’
∇2R(w(t))−1 = ∂G(x(t))∂G(x(t))⊤

G

∇2R(w(t))−1 = ∂G(x(t))∂G(x(t))⊤



Notations

• Let  be a simply-connected open set (can be any smooth submanifold)

• For , can choose 

• For a parametrization , , Jacobian 

•  denotes the solution at time  to 

• Further define  for each 

M ⊆ ℝD

w = u⊙2 − v⊙2 M = {(u, v) : u, v ∈ ℝd
+}

G : M → ℝd G(x) = [G1(x), …, Gd(x)]⊤

∂G(x) = [∇G1(x), …, ∇Gd(x)]⊤

ϕt
Gi

(x) t dϕt
Gi

(x) = − ∇Gi(ϕt
Gi

(x))dt

ψ(x; μ) = ϕμ1
G1

∘ ϕμ2
G2

∘ ⋯ ∘ ϕμd
Gd

(x) μ ∈ ℝd
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Commuting Parametrization

Def. (commuting parametrization):  Let  be a parametrization. We say 
 is a commuting parametrization if  for all  and .

G : M → ℝd

G [∇Gi, ∇Gj](x) = 0 x ∈ M i, j ∈ [d]
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x

ϕ ti
Gi

(x)

ϕ tj
Gj

(x)

ϕ ti
Gi

∘ ϕ tj
Gj

(x) = ϕ tj
Gj

∘ ϕ ti
Gi

(x)

The commuting assumption implies:
Example: 

• Each  only depends on 

•  

•  live in different subspaces


• 


• In this case,  is a commuting parametrization

w = G(x) = u⊙2 − v⊙2

Gi(x) (ui, vi)
∇Gi(x) = 2ui ⃗ei − 2vi ⃗ed+i
{∇Gi}d

i=1
[∇Gi, ∇Gj](x) ≡ 0, ∀i, j ∈ [d]

G

Lie bracket [∇Gi, ∇Gj](x) = ∇2Gj(x)∇Gi(x) − ∇2Gi(x)∇Gj(x)



Main Results: GF+Commuting MF⟹

Lemma 2  Let  be a commuting parametrization. Then for any , there exists 
a strictly convex function  such that  for all . Moreover, let  be the 
convex conjugate of , then denoting ,  satisfies 

,     where 

G : M → ℝd xinit ∈ M
Q ∇Q(μ) = G(ψ(xinit; μ)) μ R

Q x = ψ(xinit; μ) R
∇2R(w)−1 = ∂G(x)∂G(x)⊤ w = G(x)
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Theorem  Every gradient flow with commuting parametrization is a mirror flow.
dx(t) = − ∇(L ∘ G)(x(t))dt (GF) ⟺ d∇R(w(t)) = − ∇L(w(t))dt (MF)

Commuting Param.

Remark This  only depends on the initialization  and the parametrization , and is independent of the lossR xinit G

Lemma 1  Let  be a commuting parametrization. Let  follow the gradient flow on 
 with , and define . Then .

• The gradient flow is determined by the integral of the negative gradient of the loss

G : M → ℝd x(t)
L ∘ G x(0) = xinit μ(t) = ∫

t

0
− ∇L(G(x(s)))ds x(t) = ψ(xinit; μ(t))



Main Results: MF GF+Commuting⟹

Conversely, given any mirror flow, can it be reparametrized as a gradient flow?
• A similar question has been proposed by Amid & Warmuth (2020)
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Our Answer: Yes! ∇2R(w(t))−1 ⟹ ∂G(x(t))∂G(x(t))⊤

Nash’s embedding

Theorem For any smooth mirror map , consider  admitting the mirror flow on 
loss  with respect to . There exists a commuting parametrization  
such that , where  admits the gradient flow on .

R w(t)
L R G : M → ℝd

w(t) = G(x(t)) x(t) L ∘ G

• This is an existence result, not a constructive one



Summary of Our Contributions

• We identify a notion of when a parametrization  is commuting, and use it to 
give a sufficient and (almost) necessary condition for when the gradient flow on  can 
be written as a mirror flow on 

• Using the above characterization, we recover and generalize existing implicit bias 
results for underdetermined linear regression

• Conversely, we use Nash’s embedding theorem to show that every mirror flow can be 
written as a gradient flow with some reparametrization in a possibly higher-
dimensional space

w = G(x)
x

w
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Thank You!
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