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Background: Implicit Bias

* Implicit bias: special properties of the solution found by the optimization algorithm

e Notimplied by the value of the loss function
* Arise from the trajectory taken in parameter space by the optimization
. E.g., find sparse solutions without explicit £, or £; regularization

e |Implicit bias is closely related to and can explain the generalization performance of algorithms

* There are different sources of implicit bias: parametrization, step size, noise, etc.

e In this work, we study the following question:

* How do different parametrizations change the implicit bias of (continuous) gradient descent?



Problem Setting: Reparametrized Gradient Flow

d

* Consider a model with loss L : R®” — [R and parameter w € |

* w = (G(x) for a parametrization G : | D R withx € RP (D > d)

U
. Eg,w=GKx) = u® —v® where x = ( ) e R
V

* w(t) = G(x(1)), where x(?) is given by the gradient flow on L o G:
dx(r) = — V(L o G)(x(2))dt

* Understand the implicit bias via the lens of (continuous) mirror descent



Understand Implicit Bias via Mirror Descent

e Gradient flow: dx(f) = — V(L o G)(x(2))dt = — 0G(x(¢))" VL(G(x(¢))dt

* w(t) = G(x(¢)) admits the following dynamics:

dw(t) = 0G(x(2))dx(t) = —0G(x(1)0G(x(1)) " VL(w(z))dt

« Suppose there is some strictly convex function R : |

d

— |

VZRw()™' = 0G(x()0G(x(1))"

« Then the dynamics of w(f) satisfies
dw(t) = — VZR(w(1))~! V L(w(¢))dt
> dVR(w(?)) = — VL(w(t))dt

such that

(Riemannian gradient flow)
(Mirror flow)



Understand Implicit Bias via Mirror Descent (cont.)

VERw(1))™! = 0G(x(1)G(x(t))"

dx(t) = = V(L G)(x(r))dt (GF) <= dVRWw(t)) =— VL(w(r))dt (MF)

* Previous works presented several settings where the implicit bias of gradient flow

can be described by the mirror flow
Gunasekar et al. (2018); Vaskevicius et al. (2019); Woodworth et al. (2020); Amid & Warmuth (2020); Azulay et al. (2021); Yun et al. (2021) ......

« Result (linear model): If as t = o0, w(f) converges to some optimal solution w__,
then w_, minimizes a convex regularizer among all optimal solutions:

w,, = argmin Dy(w, w(0))
w:optimal

. Question: When does VZR(w(?))~! = 0G(x(£))0G(x(£))" hold?
 Our answer: When G is a ‘commuting parametrization’




Notations

e Let M C RP be a simply-connected open set (can be any smooth submanifold)
®2 _ ,,02

e Forw = u v=< can choose M = {(u,v) : u,v € | ﬁir}

* For a parametrization G : M —» R? G(x) = |G (%), ..., Gd(x)]T, Jacobian
0G(x) = [VG,(x), ..., VG (0)]"

* ¢/ (x) denotes the solution at time ¢ to dgp/. (x) = — VG,(¢s (x))dt

» Further define y(x; u) = ¢! o b2 o +++ o p4(x) for each u €
1 2 d



Commuting Parametrization

Lie bracket [ VG, V Gjl(x) = V>G{(x) VG(x) — V*G(x) VG;(x)

Def. (commuting parametrization): LetG : M — | 4 be a parametrization. We say
G is a commuting parametrizationif [V G;, V G;](x) = Oforallx € Mandi,j € [d].

The commuting assumption implies:

¢é(x) ¢gio¢gj(x) — ¢gjo¢éi(x) Example: w = G(x) = u~>" —v
l » Each G,(x) only depends on (u;, v;)
« VG(x) =2u;e; —2vie,, .
. { VGZ} - live in different subspaces
 [VG, VGl(x) =0, Vi,j € [d]

» In this case, G is a commuting parametrization

©2 ©2

v



Main Results: GF+Commuting —MF

Lemma1 LetG : M — R%be a commuting parametrization. Let x(?) follow the gradient flow on

L o G with x(0) = x;;., and define u(r) = J — VL(G(x(s)))ds. Then x(2) = w(x;;.; u(1)).
0

e The gradient flow is determined by the integral of the negative gradient of the loss

nit?

Lemma 2 Let G : M — RYbe a commuting parametrization. Then for any x; .. € M, there exists
a strictly convex function Q such that V Q(u) = G(y(x,..; #)) for all . Moreover, let R be the
convex conjugate of (J, then denoting x = w(x;,:; #), R satisfies

nit;
V’Rw)~! = 0G(x)oG(x)", where w = G(x)

Remark This R only depends on the initialization x; .. and the parametrization G, and is independent of the loss

ni

Theorem Every gradient flow with commuting parametrization is a mirror flow.
dx(?1) = — V(L o G)(x(?))dt (GF) — dVRWw(?)) = — VL(w(¢))dt (MF)

+

Commuting Param. °




Main Results: MF—>GF+Commuting

Conversely, given any mirror flow, can it be reparametrized as a gradient flow?
* A similar question has been proposed by Amid & Warmuth (2020)

Our Answer: Yes! VZR(w(£))™! ? 0G(x(1))0G(x(1))"

Nash’s embedding

Theorem For any smooth mirror map R, consider w(#) admitting the mirror flow on
loss L with respect to R. There exists a commuting parametrization G : M — | d
such that w(?) = G(x(#)), where x(7) admits the gradient flow on L o G.

e Thisis an existence result, not a constructive one



Summary of Our Contributions

* We identify a notion of when a parametrization w = G(x) is commuting, and use it to
give a sufficient and (almost) necessary condition for when the gradient flow on x can
be written as a mirror flow on w

* Using the above characterization, we recover and generalize existing implicit bias
results for underdetermined linear regression

* Conversely, we use Nash’s embedding theorem to show that every mirror flow can be
written as a gradient flow with some reparametrization in a possibly higher-
dimensional space
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