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INTRODUCTION

Given a loss L with multiple minimizers, the generalization error
depends not only on the capacity of the function class, but also on
the special property of the solution found by the training algorithm,
which is also called implicit bias of the algorithm.

In this work, we study the following question: How do different
parametrizations change the implicit bias of GD?

Continuous gradient descent on reparametrized models:

• The model consists of a loss L : Rd → R with parameterw ∈ Rd.

• Let w = G(x) for a parametrization G : RD → Rd with x ∈ RD.

– E.g., w = G(x) = u⊙2 − v⊙2 where x =
(
u
v

)
∈ R2d.

• Consider the gradient flow

dx(t) = −∇(L ◦G)(x(t))dt. (GF)

Previous works [GWB+18, VKR19, YKM20, AW20a, WGL+20,
AW20b, AMN+21] presents several settings where the implicit bias
of GF can be described by mirror flow (MF, a.k.a. continuous mirror
descent) with different convex functions.

Understanding the implicit bias via mirror descent:

• Let w(t) = G(x(t)), then w(t) admits the following dynamics

dw(t) = ∂G(x(t))dx(t) = −∂G(x(t))∂G(x(t))⊤∇L(w(t))dt.
(1)

• If there is some strictly convex function R : Rd → R such that

∇2R(w(t))−1 = ∂G(x(t))∂G(x(t))⊤, (2)

then the dynamics of w(t) satisfies

d∇R(w(t)) = −∇L(w(t))dt (MF)

which is the mirror flow.

• Then the implicit bias ofw(t) = G(x(t)) can be characterized via
properties of mirror flow, in the sense that if as t→ ∞ w(t) con-
verges to some optimal solution w∞, then w∞ minimizes a con-
vex regularizer given by the Bregman divergence of R among
all optimal solutions.

• But when does the identity in (2) hold? Or,

When can a gradient flow with parametrization G
be written as a mirror flow?

(Q)

OUR CONTRIBUTIONS

The main contributions are summarized as follows:

1. We identify a notion of when a parametrization w = G(x) is
commuting, and use it to give a sufficient and (almost) necessary
condition when (Q) has an affirmative answer.

2. Using the above characterization, we recover and generalize ex-
isting implicit bias results for underdetermined linear regres-
sion.

3. For the reverse direction of (Q), we use Nash’s embedding the-
orem to show that every mirror flow can be written as a gra-
dient flow with some reparametrization in a possibly higher-
dimensional space.

GF W/ COMMUTING PARAMETRIZATION IS A MF

Notation:

• M is a simply-connected open subset of RD (can be generalized
to any smooth submanifold of RD).

• For parametrizationG :M → Rd, {∇Gi}di=1 are the gradients of
the coordinate functions, and ∂G(x) = (∇G1(x), . . . ,∇Gd(x)).

• Lie bracket [∇Gi,∇Gj ](x) = ∇2Gj(x)∇Gi(x)−∇2Gi(x)∇Gj(x)

• For any x ∈ M and i ∈ [d], ϕtGi
(x) denotes the solution at

time t to dϕtGi
(x) = −∇Gi(ϕ

t
Gi
(x))dt. For any µ ∈ Rd, denote

ψ(x;µ) = ϕµ1

G1
◦ ϕµ2

G2
◦ · · · ◦ ϕµd

Gd
(x).

Definition (Commuting parametrization): Let G : M → Rd be a
parametrization satisfying rank(∂G(x)) = d for all x ∈M . We say G
is a commuting parametrization if [∇Gi,∇Gj ](x) = 0 for all x ∈M and
any i, j ∈ [d]. (This implies that ϕµi

Gi
◦ ϕµj

Gj
(x) = ϕ

µj

Gj
◦ ϕµi

Gi
(x).)

E.g., quadratic parametrization: Gi(x) = 1
2x

⊤Aix for all i ∈ [d],
where the matrices {Ai}di=1 commute with each other (AiAj =
AjAi). Note that the w = u⊙2 − v⊙2 parametrization is a special
case of quadratic parametrization.

Lemma 1. Let G : M → Rd be a commuting parametriza-
tion. Then for any xinit ∈ M , there exists a strictly function Q
such that ∇Q(µ) = G(ψ(xinit;µ)) for all µ. Moreover, let R be
the convex conjugate of Q, then R satisfies ∇2R(G(ψ(xinit;µ))) =(
∂G(ψ(xinit;µ))∂G(ψ(xinit;µ))

⊤)−1.

Theorem 2. Let G : M → Rd be a commuting parametrization, and
for any xinit ∈ M , let R be the strictly convex function given by
Lemma 1. Let x(t) admit the (GF) with x(0) = xinit, then w(t) =
G(x(t)) satisfies the (MF) with w(0) = G(xinit).

Remark: This R depends only on the initialization xinit and the
parametrization G, and is independent of the loss L.

MF IS A GF W/ COMMUTING PARAMETRIZATION

Conversely, given any (MF), we can use Nash’s embedding theorem
to show that it can be given by a gradient flow with some commuting
parametrization G.

Theorem 3. For any smooth R, consider w(t) admitting the (MF).
There exists a commuting parametrization G : M → Rd such that
w(t) = G(x(t)), where x(t) follows the (GF) with parametrization G.
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