Variance-aware Off-policy Evaluation with Linear Function Approximation

Yifei $Min^{1,*}$, Tianhao $Wang^{1,*}$, Dongruo Zhou², Quanquan Gu^2 .

¹Department of Statistics and Data Science, Yale University, ²Department of Computer Science, UCLA,

Off-policy Evaluation

Off-policy evaluation (OPE) refers to the problem of evaluating the performance of a target policy π given offline data generated by a behavior policy $\bar{\pi}$.

- Most existing theoretical works on OPE are in the setting of tabular MDPs (Precup, 2000; Li et al., 2011; Dudík et al., 2011; Jiang & Li, 2016; Xie et al., 2019; Yin & Wang, 2020; Yin et al., 2021), where the state space $\mathcal S$ and the action space $\mathcal A$ are both finite.
- ▶ Real-world applications often have high-dimensional or even infinite-dimensional state and action spaces, where function approximation is required for computational tractability and generalization.

In this work, we theoretically study the OPE problem for time-inhomogeneous linear MDPs (Yang & Wang, 2019; Jin et al., 2020) where the transition probability and reward function are assumed to be linear functions of a known feature mapping and may vary from stage to stage.

Problem Setting

We consider the time-inhomogeneous episodic MDP $M(S, A, H, \{r_h\}_{h=1}^H, \{\mathbb{P}_h\}_{h=1}^H)$:

- ightharpoonup a known feature mapping $\phi: \mathcal{S} imes \mathcal{A} o \mathbb{R}^d$,
- ▶ for any $h \in [H]$, there exists γ_h and $\mu_h \in \mathbb{R}^d$, such that for any state-action pair $(s, a) \in S \times A$, it holds that

$$\mathbb{P}_h(\cdot \mid s, a) = \langle \phi(s, a), \mu_h(\cdot) \rangle, \qquad r_h(s, a) = \langle \phi(s, a), \gamma_h \rangle.$$

- lacksquare Without loss of generality, we assume that $\|\gamma_h\|_2 \le 1$ and $\|\phi(s,a)\|_2 \le 1$ for all $(s,a) \in \mathcal{S} \times \mathcal{A}$.
- ▶ We assume that at any stage h, for any state-action pair $(s, a) \in S \times A$, the reward received by the agent is given by $r = r_h(s, a) + \epsilon_h(s, a)$, where $r_h(s, a) \in [0, 1]$ is the expected reward and $\epsilon_h(s, a)$ is the random noise.

Important property: for a linear MDP, for any policy π , there exist weights $\{w_h^{\pi}, h \in [H]\}$ such that for any $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]$, we have $Q_h^{\pi}(s, a) = \langle \phi(s, a), w_h^{\pi} \rangle$. Moreover, we have $\|w_h^{\pi}\|_2 \leq 2H\sqrt{d}$ for all $h \in [H]$ (Jin et al., 2020).

Our Contributions

- ► We develop VA-OPE (Variance-Aware Off-Policy Evaluation), an algorithm for OPE that effectively utilizes the variance information from the offline data.
- We show that our algorithm achieves $\tilde{\mathcal{O}}(\sum_h (\mathbf{v}_h^\top \boldsymbol{\Lambda}_h^{-1} \mathbf{v}_h)^{1/2}/\sqrt{K})$ policy evaluation error, where \mathbf{v}_h is the expectation of the feature vectors under target policy and $\boldsymbol{\Lambda}_h$ is the uncentered covariance matrix under behavior policy weighted by the conditional variance of the value function.
- ➤ Our analysis is based on a novel two-step proof technique. We also establish a uniform convergence result over all possible choices of the initial state.
- ➤ Compared with the previous work FQI-OPE (Duan et al., 2020), our algorithm achieves a tighter error bound and milder dependence on H, and provides a tighter characterization of the distribution shift between the behavior policy and the target policy, which is also verified by extensive numerical experiments.

Main Results

Theorem

Theorem. There exists some C such that with probability at least $1-\delta$, the output of VA-OPE satisfies

$$| extstyle || extstyle v_1^\pi - \hat{ extstyle v}_1^\pi| \leq C \cdot \left[\sum_{h=1}^H \| extstyle b_h^\pi\|_{oldsymbol{\Lambda}_h^{-1}}
ight] \cdot \sqrt{rac{\log(16H/\delta)}{K}}$$

where $m{b}_h^\pi = \mathbb{E}_{\pi,h}[m{\phi}(s_h,a_h)]$ and $m{\Lambda}_h = \mathbb{E}_{\bar{\pi},h}\left[\sigma_h(s,a)^{-2}m{\phi}(s,a)m{\phi}(s,a)^{\top}\right]$.

Remark: Compared with (Duan et al., 2020), their error upper bound is always $\tilde{\mathcal{O}}(H^2)$, while ours is in between $\tilde{\mathcal{O}}(H) \sim \tilde{\mathcal{O}}(H^2)$, and is **instance-dependent**.

Algorithm

Algorithm 1 Variance-Aware Off-Policy Evaluation (VA-OPE)

- 1: **for** h = H, H 1, ..., 1 **do**
- 2: $\hat{\Sigma}_h \leftarrow \sum_{k=1}^K \check{\phi}_{k,h} \check{\phi}_{k,h}^{\top} + \lambda I_d$
- 3: $\hat{\beta}_h \leftarrow \hat{\Sigma}_h^{-1} \sum_{k=1}^K \check{\phi}_{k,h} \hat{V}_{h+1}^{\pi} (\check{s}_{k,h}')^2$ (estimate second moment)
- 4: $\hat{\theta}_h \leftarrow \hat{\Sigma}_h^{-1} \sum_{k=1}^K \check{\phi}_{k,h} \hat{V}_{h+1}^{\pi} (\check{s}_{k,h}')$ (estimate first moment)
- 5: $\hat{\sigma}_h(\cdot,\cdot) \leftarrow \sqrt{\max\{1,\hat{\mathbb{V}}_h\hat{V}_{h+1}^{\pi}(\cdot,\cdot)\}+1}$ (estimate variance)
- 6: $\hat{\mathbf{\Lambda}}_h \leftarrow \sum_{k=1}^{K} \phi_{k,h} \phi_{k,h}^{\top} / \hat{\sigma}_{k,h}^2 + \lambda \mathbf{I}_d$ (backward)
- 7: $Y_{k,h} \leftarrow r_{k,h} + \langle \phi_h^{\pi}(s'_{k,h}), \hat{w}_{h+1}^{\pi} \rangle$ weighted
- 8: $\hat{w}_h^{\pi} \leftarrow \hat{\Lambda}_h^{-1} \sum_{k=1}^K \phi_{k,h} Y_{k,h} / \hat{\sigma}_{k,h}^2$ regression)
- 9: $\hat{Q}_h^{\pi}(\cdot,\cdot) \leftarrow \langle \phi(\cdot,\cdot), \hat{\mathbf{w}}_h^{\pi} \rangle$, $\hat{V}_h^{\pi}(\cdot) \leftarrow \langle \phi_h^{\pi}(\cdot), \hat{w}_h^{\pi} \rangle$
- 10: end for
- 11: Output: $\hat{v}_1^{\pi} \leftarrow \int_{\mathcal{S}} \hat{V}_1^{\pi}(s) \, \mathrm{d}\xi_1(s)$

Duan, Y., Jia, Z., & Wang, M. (2020). Minimax-optimal off-policy evaluation with linear function approximation. In *International Conference on Machine Learning* (pp. 2701–2709). PMLR