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Stochastic Shortest Path (SSP)

• Online SSP: a type of goal-oriented RL problem
• Episodic interaction: each episode starts from an initial state and

ends when the agent reaches the goal state g
• Cost: each state-action pair (s, a) incurs a cost c(s, a)
• Goal: to minimize the cumulative cost over all episodes

• SSP is a generalization of episodic finite-horizon MDPs and
discounted infinite-horizon MDPs
• The horizon length varies across episodes, and can be random

• Beyond tabular SSP: linear function approximation
• Existing works on tabular SSP (Rosenberg et al. 2020; Cohen

et al. 2021; Tarbouriech et al. 2021, ...)
• Linear mixture SSP: assume that there exists an unknown vector

θ∗ ∈ Rd such that P(s ′|s, a) = 〈φ(s ′|s, a),θ∗〉
• Linear mixture model is common in RL literature (Ayoub et al.

2020; Zhou et al. 2021b, ...)

This work: efficiently learn linear mixture SSP
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Linear Mixture SSP: Algorithmic Design

• Two approaches for SSP in existing literature:
• By reduction to finite-horizon MDP (Cohen et al. 2021; Chen

et al. 2021, ...)
• By (implicitly) viewing SSP as an infinite-horizon problem

(Tarbouriech et al. 2021; Vial et al. 2021, ...)

• LEVIS: a novel optimistic value-iteration algorithm for linear
mixture SSP
• Model estimate updating criteria: coupling features with time

• Determinant-doubling + time-step-doubling

• Optimistic planning: contraction via perturbation
• There is no discount factor in SSP → no contraction for EVI
• Introduce an auxiliary discount factor by perturbing the transition

probability
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Linear Mixture SSP: Algorithm

Algorithm 1 LEVIS

1: for episode k = 1, 2, . . . ,K do
2: while st 6= g do
3: Greedily take action at , and receive c(st , at) and st+1

4: Σt ← Σt−1 + φV (st , at)φV (st , at)
>

5: if det(Σt) or t doubles then
6: Update model estimate θ̂ and its confidence region
7: Call DEVI to update estimate of the value functions

Algorithm 2 DEVI

1: while ‖V (i) − V (i−1)‖∞ ≥ ε do
2: Q(i+1)(·, ·)← cρ(·, ·) + (1− q) min〈θ,φV (i)(·, ·)〉
3: V (i+1)(·)← mina Q

(i+1)(·, a)

• Determinant-doubling + time-step-doubling

• Perturb the transition probability



Linear Mixture SSP: Theory

Theorem (Regret upper bound)

Under technical assumptions, the proposed algorithm LEVIS

achieves a Õ(dB1.5
?

√
K/cmin) regret, where d is the feature

dimension, B? is the cost of the optimal policy, cmin > 0 is the
lower bound of the per-step cost.

Theorem (Regret lower bound)

Under technical assumptions, any algorithm for linear mixture SSP
incurs at least an expected regret of Ω(dB?

√
K ).

• There is a
√
B?-gap between the upper and lower bound. How

to do better?
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Linear Mixture SSP: Near-optimal Regret

• Design Bernstein-type confidence region to reduce the
dependence on B?
• Similar technique has been used in online/offline RL (Zhou et al.

2021a; Zhang et al. 2021; Min et al. 2021, ...)

Theorem (Near-optimal regret bound)

Under technical assumptions, by using a refined Bernstein-type
confidence region in algorithm LEVIS, it can achieve
Õ(dB?

√
K/cmin) regret.

• There is still a remaining gap of 1/
√
cmin

• Future work: how to remove the dependence on cmin?



Linear Mixture SSP: Near-optimal Regret

• Design Bernstein-type confidence region to reduce the
dependence on B?
• Similar technique has been used in online/offline RL (Zhou et al.

2021a; Zhang et al. 2021; Min et al. 2021, ...)

Theorem (Near-optimal regret bound)

Under technical assumptions, by using a refined Bernstein-type
confidence region in algorithm LEVIS, it can achieve
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