

Provably Efficient Reinforcement Learning with Linear Function Approximation under Adaptivity Constraints

Tianhao Wang 1,* and Dongruo Zhou 2,* and Quanquan Gu 2

¹Department of Statistics and Data Science, Yale University ²Department of Computer Science, University of California, Los Angeles

Problem Setting

► Episodic Markov Decision Processes:

 $\mathcal{M}(S, A, H, \{r_h\}_{h=1}^H, \{\mathbb{P}_h\}_{h=1}^H)$

- \triangleright State space S, action space A
- \triangleright Reward function $r_h: \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$
- \triangleright Transition probability function $\mathbb{P}_h(s' \mid s, a)$
- \triangleright Episode length H
- ▶ Policy: A policy π consists of H mappings, $\{\pi_h\}_{h=1}^H$, from $\mathcal S$ to $\mathcal A$
- ► Goal: Find a policy to maximize the return
- ▶ Value function: Expected accumulative reward for policy π : $V_1^{\pi}(s) = \mathbb{E}\left[\sum_{h=1}^{H} r_h(s_h, \pi_h(s_h)) | s_1 = s\right]$
- ightharpoonup Regret: The sum of sub-optimality over K episodes

$$\mathsf{Regret}(T) = \sum_{k=1}^K V_1^*(s_1^k) - V_1^{\pi^k}(s_1^k),$$

where T=KH and $V_1^*(s_t)=\sup_{\pi}V_1^{\pi}(s_t)$

- Adaptivity constraint: Given the number of episodes K, there is a hard budget B on the number of policy switches: $\sum_{k=1}^{K-1} \mathbb{1}\{\pi^k \neq \pi^{k+1}\} \leq B$
- ▶ Batch learning model: policy switches only happen at prefixed grids $1 = t_1 < \cdots < t_B < t_{B+1} = K+1$
- ► Rare policy switch model: the agent can adaptively choose when to switch the policy

Assumptions

- Linear MDPs: Assume there exist unknown measures $\{\boldsymbol{\mu}_h = (\boldsymbol{\mu}_h^{(1)}, \dots, \boldsymbol{\mu}_h^{(d)})\}_{h=1}^H$, unknown vectors $\{\boldsymbol{\theta}_h\}_{h=1}^H$, and a known feature mapping $\boldsymbol{\phi}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$, s.t.
 - $\triangleright \mathbb{P}_h(s'|s,a) = \langle \boldsymbol{\phi}(s,a), \boldsymbol{\mu}_h(s') \rangle$
 - $ho r_h(s,a) = \langle \phi(s,a), \theta_h \rangle$ for each $h \in [H]$.

Main Results: Batch Learning Model

► Algorithm LSVI-UCB-Batch

Set $b \leftarrow 1$, $t_i \leftarrow (i-1)\lfloor \frac{K}{B} \rfloor + 1$ (uniform grid) for episode $k = 1, 2, \ldots, K$ do if $k = t_b$ (time to switch the policy) then $b \leftarrow b+1$, $Q_{H+1}^k(\cdot,\cdot) \leftarrow 0$ Compute optimistic estimates $\{Q_h^k\}_{h=1}^H$ by backward regression (Jin et al., 2020) Compute greedy policy π^k induced by $\{Q_h^k\}_{h=1}^H$ else $\pi^k \leftarrow \pi^{k-1}$ (keep the current policy)

Run policy π^k to obtain $\{(s_h^k, a_h^k, r_h(s_h^k, a_h^k))\}_{h=1}^H$

Regret upper bound

Under technical assumptions and with appropriate choice of parameters, the total regret of

LSVI-UCB-Batch is bounded by

 $\mathsf{Regret}(T) = \widetilde{O}\left(dHT/B + \sqrt{d^3H^3T}\right)$

Main Results: Rare Policy Switch Model

► Algorithm LSVI-UCB-RareSwitch

Initialize $\mathbf{\Lambda}_h = \mathbf{\Lambda}_h^0 = \lambda \mathbf{I}_d$ for all $h \in [H]$ for episode $k = 1, 2, \dots, K$ do $\mathbf{\Lambda}_h^k \leftarrow \sum_{\tau=1}^{k-1} \boldsymbol{\phi}(s_h^\tau, a_h^\tau) \boldsymbol{\phi}(s_h^\tau, a_h^\tau)^\top + \lambda \mathbf{I}_d$ if $\exists h, \det(\mathbf{\Lambda}_h^k) > \eta \det(\mathbf{\Lambda}_h)$ (criterion) then $\{\mathbf{\Lambda}_h\}_{h=1}^H \leftarrow \{\mathbf{\Lambda}_h^k\}_{h=1}^H$ Compute optimistic estimates $\{Q_h^k\}_{h=1}^H$ by backward regression, update greedy policy π^k else $\pi^k \leftarrow \pi^{k-1}$ (keep the current policy) Run policy π^k to obtain $\{(s_h^k, a_h^k, r_h(s_h^k, a_h^k))\}_{h=1}^H$

Main Results: Rare Policy Switch Model (cont.)

Regret upper bound

Under technical assumptions and with appropriate choice of parameters, the total regret of LSVI-UCB-RareSwitch satisfies

$$\operatorname{Regret}(T) \leq \widetilde{O}\left(\sqrt{d^3H^3T[1+T/(dH)]^{dH/B}}\right)$$

Discussion

- **Comparison with LSVI-UCB:** To achieve a $\widetilde{O}(\sqrt{d^3H^3T})$ regret which is attained by the original LSVI-UCB algorithm (Jin et al., 2020), the proposed algorithms require a much smaller number of policy switches (K for LSVI-UCB):
 - \triangleright For LSVI-UCB-Batch, $B = \Omega(\sqrt{T/(dH)})$
 - ightharpoonup For LSVI-UCB-RareSwitch, $B = \Omega(dH \log T)$
- ► Regret lower bound For batch learning model, a complimentary lower bound is proved:

Suppose $B \ge (d-1)H/2$. Then for any batch learning algorithm with B batches, there exists a linear MDP such that the regret satisfies

$$\mathsf{Regret}(T) = \Omega(dH\sqrt{T} + dHT/B)$$

- ▶ It remains an open problem to establish a similar lower bound for the rare policy switch model.

Reference

JIN, C., YANG, Z., WANG, Z. and JORDAN, M. I. (2020). Provably efficient reinforcement learning with linear function approximation. In *Conference on Learning Theory*. PMLR.