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Problem Setting

I Episodic Markov Decision Processes:
M(S,A, H, {rh}Hh=1, {Ph}Hh=1)
. State space S, action space A
. Reward function rh : S ×A → [0, 1]
. Transition probability function Ph(s′ | s, a)
. Episode length H

I Policy: A policy π consists of H mappings, {πh}Hh=1,
from S to A

I Goal: Find a policy to maximize the return
I Value function: Expected accumulative reward for

policy π: V π
1 (s) = E

[∑H
h=1 rh(sh, πh(sh))|s1 = s

]
I Regret: The sum of sub-optimality over K episodes

Regret(T ) =

K∑
k=1

V ∗1 (sk1)− V πk

1 (sk1),

where T = KH and V ∗1 (st) = supπ V
π

1 (st)
I Adaptivity constraint: Given the number of episodes

K, there is a hard budget B on the number of policy
switches:

∑K−1
k=1 1{πk 6= πk+1} ≤ B

I Batch learning model: policy switches only happen
at prefixed grids 1 = t1 < · · · < tB < tB+1 = K + 1

I Rare policy switch model: the agent can adaptively
choose when to switch the policy

Assumptions

I Linear MDPs: Assume there exist unknown measures
{µh = (µ

(1)
h , . . . ,µ

(d)
h )}Hh=1, unknown vectors {θh}Hh=1,

and a known feature mapping φ : S ×A → Rd, s.t.
. Ph(s′|s, a) =

〈
φ(s, a),µh(s

′)
〉

. rh(s, a) =
〈
φ(s, a),θh

〉
for each h ∈ [H ].

Main Results: Batch Learning Model

I Algorithm LSVI-UCB-Batch

Set b← 1, ti← (i− 1)bKBc + 1 (uniform grid)
for episode k = 1, 2, . . . , K do
if k = tb (time to switch the policy) then
b← b + 1, Qk

H+1(·, ·)← 0
Compute optimistic estimates {Qk

h}Hh=1 by back-
ward regression (Jin et al., 2020)
Compute greedy policy πk induced by {Qk

h}Hh=1

else
πk ← πk−1 (keep the current policy)

Run policy πk to obtain {(skh, akh, rh(skh, akh))}Hh=1

I Regret upper bound

Under technical assumptions and with appropri-
ate choice of parameters, the total regret of
LSVI-UCB-Batch is bounded by

Regret(T ) = Õ
(
dHT/B +

√
d3H3T

)
Main Results: Rare Policy Switch Model

I Algorithm LSVI-UCB-RareSwitch

Initialize Λh = Λ0
h = λId for all h ∈ [H ]

for episode k = 1, 2, . . . , K do
Λk
h←

∑k−1
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)
> + λId

if ∃h, det(Λk
h) > η det(Λh) (criterion) then

{Λh}Hh=1← {Λk
h}Hh=1

Compute optimistic estimates {Qk
h}Hh=1 by back-

ward regression, update greedy policy πk

else
πk ← πk−1 (keep the current policy)

Run policy πk to obtain {(skh, akh, rh(skh, akh))}Hh=1

Main Results: Rare Policy Switch Model (cont.)

I Regret upper bound

Under technical assumptions and with appropri-
ate choice of parameters, the total regret of
LSVI-UCB-RareSwitch satisfies

Regret(T ) ≤ Õ

(√
d3H3T [1 + T/(dH)]dH/B

)

Discussion

I Comparison with LSVI-UCB: To achieve a
Õ(
√
d3H3T ) regret which is attained by the original

LSVI-UCB algorithm (Jin et al., 2020), the proposed
algorithms require a much smaller number of policy
switches (K for LSVI-UCB):
. For LSVI-UCB-Batch, B = Ω(

√
T/(dH))

. For LSVI-UCB-RareSwitch, B = Ω(dH log T )
I Regret lower bound For batch learning model, a

complimentary lower bound is proved:

Suppose B ≥ (d − 1)H/2. Then for any batch
learning algorithm with B batches, there exists a
linear MDP such that the regret satisfies

Regret(T ) = Ω(dH
√
T + dHT/B)

. This suggests that the dependency on B in the upper
bound for LSVI-UCB-Batch is tight

. It remains an open problem to establish a similar
lower bound for the rare policy switch model.
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